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In [1–11,15] generating functions of the distributions of words are given as rational
functions, however except for simple cases, it is difficult to expand rational functions
into power series [3] and we cannot obtain explicit formulae for the distributions of
words from rational generating functions. In this article, we give some explicit formulae
for the distributions of words. Parts of the paper have been presented in [12–14].

Let Xn := X1 · · ·Xn be random variables that take value in finite alphabet and
N(w1, . . . , wl;X

n) the number of the appearances of the words w1, . . . , wl in an arbi-
trary position of Xn, i.e.

N(w1, . . . , wl;X
n) := (

n−|w1|+1∑
i=1

Iw1(Xi · · ·Xn), . . . ,

n−|wl|+1∑
i=1

Iwl
(Xi · · ·Xn)),

where |wj| is the length of wj and Iwj
(Xi · · ·Xn) = 1 if Xi · · ·Xi+|wj |−1 = wj else 0

for all i, j. For example N(10, 11; 1011101) = (2, 2). A word x is called overlapping if
there is a word z such that x appears at least 2 times in z and |z| < 2|x| otherwise
x is called nonoverlapping. A pair of words x, y is called overlapping if there is a
word z such that x and y appear in z and |z| < |x| + |y|. A finite set of words S is
called nonoverlapping if every pair (x, y) for x, y ∈ S are not overlapping, otherwise,
S is called overlapping. For example, sets of words, {11}, {10, 01}, and {00, 11} are
overlapping, and {10} and {00111, 00101} are nonoverlapping.

Theorem 1 ( [12, 14]). Let X1X2 · · ·Xn be i.i.d. random variables that take value
in finite alphabet A and P an i.i.d. probability on An. Let w1, . . . , wl be the set of
nonoverlapping words, mi = |wi|, and P (wi) the probability of wi for i = 1, . . . , l.
Then

P (N(w1, . . . , wl;X
n) = (s1, . . . , sl))

=
∑

k1,...,kl :
s1≤k1,...,sl≤kl∑

i miki≤n

(−1)
∑

i ki−si

(
n−

∑
i miki +

∑
i ki

s1, . . . , sl, k1 − s1, . . . kl − sl

) l∏
i=1

P ki(wi).

For simplicity, in the following, we consider binary i.i.d. random variables. We
enumerate increasing sequence of words. Then we enumerate overlapping word 0m for
m = 0, 1, . . .. Suppose that w1 is a prefix of w2 and (k1, k2) = N(w1, w2;X

n). Then
k1 is the number of appearances of w1 and w2. To avoid duplication, we modify the
function N .

N ′(w1, . . . , wl;X
n) := (k1, k2, . . . , kl) where

k1 = s1 − s2, k2 = s2 − s3, . . . , kl = sl and (s1, . . . , sl) = N(w1, . . . , wl;X
n).
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Theorem 2. Let P be an i.i.d. probability on {0, 1}n and w1 = 10m, w2 = 10m+1, . . . , wn−m =
10n−1. Let (k1, . . . , kn−m) = N ′(w1, . . . , wn−m;X

n)) and Pn(t) := P (t =
∑

i iki). Then

P (N(0m;Xn) = t) = (Pn+1(t)− P (0)Pn(t))P
−1(1), and

Pn(t) =
∑

r,k1,...,kn−m :∑
i(m+i)ki≤n, 0≤r≤

∑
i ki

t=k1+2k2+···+(n−m)kn−m−r

(−1)r
(
n−

∑
i(m+ i)ki +

∑
i ki

k1, . . . , kn−m

)(∑
i ki
r

) n−m∏
i=1

P ki(wi).

Remark 1. Let m = 1 and P be the fair coin-flipping in Theorem 2. Then Pn(t) =(
n

t

)
2−n for all t ≤ n.
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