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Problem: the number of the occurrences of words in finite
strings

The number of the occurrences of words in finite strings plays important
role in infomation theory, genome analysis, statistics, AI, etc.

Example: The words 10 and 00 appear in 100010010 three times.

Run: 0m,m = 2, 3, . . ..

We study the enumeration (and distribution) of the number of the
occurrences of runs with several types of counting in finite strings.

Remark: The distributions of the number of the occurrence of letters 1
and 0 are given by binomial distribution.
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Known results, generating functions

In Regnier et.al [12], Bassino et.al [1], and Robin [13], the number of the
occurrences of words given as generating functions.

f (n, k ,w): the number of x1 · · · xn in which w appears k times. Then∑
n,k

f (n, k ,w)zn1 z
k
2 =

g(z1, z2)

h(z1, z2)
.

g , h: polynomial.
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Known results, generating functions 2, example

Example： Guibas and Odlyzko [5]

∑
n

f (n, 0, 10)zn =
1

(1− z)2

= (
∑

zn)2

=
∑

(n + 1)zn.

f (n, 0, 10) = n + 1 for all n = 1, 2, . . .

000, 001, 011, 111 and f (3, 0, 10) = 4.
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Known results, generating functions 3

f (n, k ,w): the number of x1 · · · xn in which w appears k times. Then∑
n,k

f (n, k ,w)zn1 z
k
2 =

g(z1, z2)

h(z1, z2)
, g , h: polynomial.

注１：既存の方法では長さ nに関する再帰的な関係から生成関数を導出
したために上式で nを固定した有限次元の生成関数で表すことはできな
い．Generating functions are derived by induction on length n and we do
not have a finite order generating function.

注２: 生成関数をベキ級数展開すれば f (n, k ,w)が求まるが一般には有利
関数のべき級数展開は簡単な場合を除いて難しい．It is difficult to
expand rational function into power series except for simple cases.

注３: 生成関数から f (n, k ,w)の近似解や再帰的計算法を導くことができ
る．We have approximation of f (n, k ,w) from generating function. Some
reccurrence formula for f (n, k ,w) are derived from generating function.
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Main theorem 1: Distributions of nonoverlapping words

Theorem (Takahashi [17, 14])

Let X n
1 be i.i.d. random variables that take value in finite alphabet A and

P an i.i.d. probability on An. Let w1, . . . ,wl be the set of nonoverlapping
words, mi = |wi |, and P(wi ) the probability of wi for i = 1, . . . , l . Then

P(N(w1, . . . ,wl ;X
n
1 ) = (s1, . . . , sl))

=
∑

k1,...,kl :
s1≤k1,...,sl≤kl∑

i miki≤n

(−1)
∑

i ki−si

(
n −

∑
i miki +

∑
i ki

s1, . . . , sl , k1 − s1, . . . kl − sl

) l∏
i=1

Pki (wi ).
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Outline of Proof

Let

A(k) :=

(
n −mk + k

k

)
Pk(w). (1)

Example k = 2.

x1 · · · xn = · · · w︸︷︷︸ · · · w︸︷︷︸ · · ·
x1 · · · xn−2m+2 = · · · α · · · α · · ·

B(t): the probability that nonoverlapping words w appear k times.
Then

A(k) =
∑
k≤t

B(t)

(
t

k

)
.
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Outline of Proof

Let FA(z) :=
∑

k A(k)z
k and FB(z) :=

∑
k B(k)z

k . Then

FA(z) =
∑
k

zk
∑
k≤t

B(t)

(
t

k

)

=
∑
t

B(t)
∑
k≤t

(
t

k

)
zk

=
∑
t

B(t)(z + 1)t = FB(z + 1),

and
FB(z) = FA(z − 1).
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moments

Let

At,s :=
∑
r

(
s

r

)
r t(−1)s−r .

At,s is the number of surjective functions from
{1, 2, . . . , t} → {1, 2, . . . , s} for t, s ∈ N, see pp.100 Problem 1 Riordan
1958.

Theorem (Takahashi [17, 14])

Let w be a nonoverlapping word.

∀t E (Nt(w ;X n)) =

min{T ,t}∑
s=1

At,s

(
n − s|w |+ s

s

)
Ps(w),

where T = max{t ∈ N | n − t|w | ≥ 0}.
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Known resuls, runs, various type of counting

Fu et.al (1994) [3] showed the distributions of the following statistics by
Markov imbedding method.

(i) En,m, the number of 0m of size exactly m. Mood(1940) [9].

(ii) Gn,m, the number of 0m of size greater than or equal to m.

(iii) Nn,m, the number of nonoverlapping consecutive 0m. Feller [2].

(iv) Mn,m, the number of overlapping consecutive 0m.

(v) Ln, the size of the longest run of 0s.

Example: E8,2 = 1, G8,2 = 2, N8,2 = 3, M8,2 = 4, and L8 = 4 for

run 00 and 10000100.
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Known resuls, other explicit formulae

Explicit formulae for the distributions of runs are given in

Gn,m: Makri et.al (2007) [8]

Nn,m: Hirano (1986) [6], Phillipou et.al (1986) [11], Godbole (1990) [4],
Muselli (1996) [10]

Mn,m: Ling (1988) [7].

Ln: Makri et.al (2007) [8]
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Definition

(i) Ēn,m, the number of 0m of size exactly m that start with 1.

(ii) Ḡn,m, the number of 0m of size greater than or equal to m that start
with 1.

(iii) N̄n,m, the number of nonoverlapping consecutive 0m that start with 1.

(iv) M̄n,m, the number of overlapping consecutive 0m that start with 1.

E8,2 = Ē8,2 = 1, G8,2 = Ḡ8,2 = 2, N8,2 = N̄8,2 = 3, M8,2 = M̄8,2 = 4 for

run 00 and 10000100.

E10,2 = 2, G10,2 = 3, N10,2 = 4, M10,2 = 5,
Ē10,2 = 1, Ḡ10,2 = 2, N̄10,2 = 3, M̄10,2 = 4 for

run 00 and 0010000100.
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Main Theorem2: Distributions of runs

Theorem

Let P be an i.i.d. probability on {0, 1}n.

(i) P(En,m = t) = (P(Ēn+1,m = t)− P(0)P(Ēn,m = t))/P(1).

P(Ēn,m = t) =∑
k1,k2:

(m+1)k1+(m+2)k2≤n,
t≤k1+k2

(−1)k1−t

(
n − (m + 1)k1 − (m + 2)k2 + k1 + k2

k1, k2

)

×
(
k1 + k2

t

)
Pk1(10m)Pk2(10m+1).
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Main Theorem 2

Theorem (Continue)

(ii) P(Gn,m = t) = (P(Ḡn+1,m = t)− P(0)P(Ḡn,m = t))/P(1).

P(Ḡn,m = t) =
∑

k : t≤k,(m+1)k≤n

(−1)k−t

(
n − (m + 1)k + k

t, k − t

)
Pk(10m).
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Main Theorem 3

Theorem (Continue)

(iii) P(Nn,m = t) = (P(N̄n+1,m = t)− P(0)P(N̄n,m = t))P−1(1).

P(N̄n,m = t) =∑
r ,k1,...,kT :∑

i (mi+1)ki≤n, 0≤r≤
∑

i ki
t=

∑
i iki−r

(−1)r
(
n −

∑
i (mi + 1)ki +

∑
i ki

k1, . . . , kn−m

)(∑
i ki
r

)

×
T∏
i=1

Pki (10im).

T is the maximum integer such that Tm + 1 ≤ n.
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Main Theorem 4

Theorem (Continue)

(iv) P(Mn,m = t) = (P(M̄n+1,m = t)− P(0)P(M̄n,m = t))P−1(1).

P(M̄n,m = t) =
∑

r ,k1,...,kn−m :∑
i (m+i)ki≤n, 0≤r≤

∑
i ki

t=
∑

iki−r

(−1)r
(
n −

∑
i (m + i)ki +

∑
i ki

k1, . . . , kn−m

)

×
(∑

i ki
r

) n−m∏
i=1

Pki (10m+i−1).

(v) P(Ln = t) = P(Nn,t+1 = 0)− P(Nn,t = 0).
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Lemma (Takahashi [18])

Let

En,m,t = {xn1 | En,m(x
n
1 ) = t} and Ēn,m,t = {xn1 | Ēn,m(x

n
1 ) = t}.

Then
P(Ēn+1,m,t) = P(0)P(Ēn,m,t) + P(1)P(En,m,t). (2)

(Gn,m,t , Ḡn,m,t), (Nn,m,t , N̄n,m,t), and (Mn,m,t , M̄n,m,t) are defined by
similar manner and (2) is true for them respectively.

Proof) Let Ē 0
n+1,m,t = {0xn1 | Ēn+1,m(0x

n
1 ) = t} and

Ē 1
n+1,m,t := {1xn1 | Ēn+1,m(1x

n
1 ) = t}. Then

Ē 0
n+1,m,t = {0xn1 | xn1 ∈ Ēn,m,t}, Ē 1

n+1,m,t = {1xn1 | xn1 ∈ En,m,t}, and (3)

Ēn+1,m,t = Ē 0
n+1,m,t ∪ Ē 1

n+1,m,t . (4)

By (3) and (4), we have (2). The proof of the latter part is similar.
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Definitions

N(w1, . . . ,wl ;X
n
1 ) : the number of the overlapping appearances of

w1,w2, . . . ,wl in X n
1 .

Suppose that w1 and w2 are nonoverlapping,
w1 ⊏ w2 and N(w1, . . . ,wl ;X

n
1 ) = (s1, . . . , sl).

Then
s1 is the number of the appearances of w1 and w2.

N′(w1, . . . ,wl ;X
n
1 ) := (s1 − s2, s2 − s3, . . . , sl)

if N(w1, . . . ,wl ;X
n
1 ) = (s1, s2, . . . , sl).

Example: N(100, 1000; 1010001) = (1, 1) and
N′(100, 1000; 1010001) = (0, 1).
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Lemma (Takahashi [15, 16, 18])

Let w1 ⊏ w2 · · · ⊏ wl be an increasing sequence of nonoverlapping words,

A(k1, . . . , kl) :=

(
n −

∑
i miki +

∑
i ki

k1, . . . , kl

) l∏
i=1

Pki (wi ),

B(k1, . . . , kl) := P(N′(w1, . . . ,wl ;X
n) = (k1, k2, . . . , kl)),

FA(z1, . . . , kl) :=
∑

k1,...,kl :∑
i miki≤n

A(k1, . . . , kl)z
k1 · · · zkl , and

FB(z1, . . . , zl) :=
∑

k1,...,kl :∑
i miki≤n

B(k1, . . . , kl)z
k1 · · · zkl .
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Then

FA(z1, . . . , zl) = FB(z1 + 1, z1 + z2 + 1, . . . ,
∑
i

zi + 1) and (5)

Set z1 = X , z2 = X (X + 1), . . . , zl = X (X + 1)l−1 in (6). Then

FA(X ,X (X + 1), . . . ,X (X + 1)l−1) = FB(X + 1, (X + 1)2, . . . , (X + 1)l)

FA(Y − 1, (Y − 1)Y , . . . , (Y − 1)Y l−1) = FB(Y ,Y 2, . . . ,Y l)

=
∑

k1,...,kl :∑
i miki≤n

B(k1, . . . , kl)Y
∑

iki .

Hayato Takahashi (Random Data Lab. Inc.)A unified approach to explicit formulae for the distributions of runs
Feb. 11, 2023 Workshop “Number theory and Ergod theory”
21 / 26



Generalization

Our theorem is true for arbitrary alphabet.
X1,X2, . . . ,Xn: i.i.d. r.v.∼ (R ,B,Q).
Event A0 ⊂ R and Q(A0) = Q(Xi ∈ A0).
Example: The run A0A0 occurs one time in the event Ac

0A
c
0A0A0A

c
0.

Corollary

The probability of statistics (i)–(v) of run A0 is obtained by setting
P(0) = Q(A0) and P(1) = Q(Ac

0) in Main theorem.

Example: Xi ∈ {0, 1, 2, . . .}. The probability of runs of 0 are obtained by
setting P(1) = 1− Q(0) and P(0) = Q(0) in Main theorem.
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